1编号:4855题型:解答题测试正确率:53.13%
(2011广东茂名)如图,⊙P与轴相切于坐标原点O(0,0),与轴相交于点A(5,0),过点A的直线AB与轴的正半轴交于点B,与⊙P交于点C.(1)已知AC=3,求点B的坐标;(2)若AC=,D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示).
2编号:4841题型:解答题测试正确率:60.13%
(2011安徽)如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.
3编号:4630题型:解答题测试正确率:55.0%
如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG;(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;(4)当时,请直接写出的值.
4编号:4629题型:解答题测试正确率:66.43%
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α= 度时,四边形EDBC是等腰梯形,此时AD的长为 ;②当α= 度时,四边形EDBC是直角梯形,此时AD的长为 ;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
5编号:4619题型:解答题测试正确率:52.04%
甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1)分别求出甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?
6编号:4618题型:解答题测试正确率:56.51%
已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
7编号:4613题型:解答题测试正确率:37.14%
如图,直线与反比例函数的图象交于A,B两点.(1)求、的值;(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
8编号:4612题型:解答题测试正确率:82.86%
先化简,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.
9编号:4592题型:解答题测试正确率:59.8%
某校组织七年级学生到军营训练,为了喝水方便,要求每个学生各带一只水杯,几个学生可以合带一个水壶.可临出发前,带队老师发现有51名同学没带水壶和水杯,于是老师拿出260元钱并派两名同学去附近商店购买.该商店有大小不同的甲、乙两种水壶,并且水壶与水杯必须配套购买.每个甲种水壶配4只杯子,每套20元;每个乙种水壶配6只杯子,每套28元.若需购买水壶10个,设购买甲种水壶x个,购买的总费用为y(元).(1)求出y与x之间的函数关系式(不必写出自变量x的取值范围);(2)请你帮助设计所有可能的购买方案,并写出最省钱的购买方案及最少费用.
10编号:4591题型:解答题测试正确率:66.11%
今年四月份,李大叔收获洋葱30吨,黄瓜13吨,现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨;一辆乙种货车可装洋葱和黄瓜各2吨.(1)李大叔安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请帮李大叔算一算应选择哪种方案,才能使运费最少?最少运费是多少元?
提醒: