如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.

(1)求证:①DE=DG;②DE⊥DG;
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;
(4)当时,请直接写出的值.

答案

(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°∴DE⊥DG.
(2)略
(3)四边形CEFK为平行四边形.证明:设CK、DE相交于M点,

∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD,AB=CD,EF=DG,EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF,CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.
(4)∵,∴设CE=x,CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,∵BC2=n2x2,∴

知识点:平行四边形的判定  正方形的性质  

解题思路

(1)由已知证明DE、DG所在的三角形全等,即△DCE≌△DAG,得到对应角相等,再通过等量代换证明DE⊥DG;
(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F,得到正方形DEFG;
(3)由已知首先证四边形CKGD是平行四边形,然后证明四边形CEFK为平行四边形;
(4)都是正方形,所以只需找出边长平方之比就可以了.

易错点

查看相关视频

下载次数:2

<<上一题   下一题>>