1编号:3443题型:解答题测试正确率:48.15%

如图所示,四边形OABC是矩形,点A、C的坐标分别为(),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E.(1)记△ODE的面积为S.求S与b的函数关系式;(2)当点E在线段OA上时,且tan∠DEO=.若矩形OABC关于直线DE的对称图形为四边形.试探究四边形与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.

2编号:3306题型:解答题测试正确率:100.0%

兄弟两人骑马进城,全程51千米。马每小时行12千米,但只能一个人骑马。哥哥每小时步行5千米,弟弟每小时行4千米。两人轮换骑马和步行,骑马者走过一段距离就下鞍栓马(时间忽略不计)然后独自步行;而步行者到达此地,再上马前进。如果他们早晨六点动身,何时能同时到达城里?

3编号:3294题型:解答题测试正确率:40.0%

(2011山东东营)如图所示,四边形OABC是矩形,点A、C的坐标分别为(),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E.(1)记△ODE的面积为S.求S与b的函数关系式;(2)当点E在线段OA上时,且tan∠DEO=.若矩形OABC关于直线DE的对称图形为四边形.试探究四边形与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.

4编号:3272题型:解答题测试正确率:88.62%

(2011云南曲靖)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.

5编号:3271题型:解答题测试正确率:91.45%

(2010年浙江绍兴市)(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长.(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

6编号:3175题型:解答题测试正确率:0%

(2011山东烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;

7编号:3167题型:解答题测试正确率:44.44%

(2011山东烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;

8编号:3114题型:解答题测试正确率:36.0%

如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.(1)求梯形ABCD的周长;(2)动点P从点B出发,以1cm/s的速度沿B→A→D→C方向向点C运动;动点Q从点C出发,以1cm/s的速度沿C→D→A方向向点A运动;过点Q作QF⊥BC于点F.若P、Q两点同时出发,当其中一点到达终点时整个运动随之结束,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

9编号:3113题型:解答题测试正确率:75.73%

(2010年浙江省东阳县)如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t。求:(1)C的坐标为;(2)当t为何值时,△ANO与△DMR相似?(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的最大值。

10编号:2997题型:解答题测试正确率:43.24%

(2011四川)如图,一次函数与反比例函数y1= –(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=(x>0)的图象与y1=-– (x<0)的图象关于y轴对称.在y2=(x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.