1编号:60157题型:单选题测试正确率:0%
(上接第1题)(2)如图2,当点P在DC的延长线上时,求证:EF=DF-BE.
解题思路:(2)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;又有∠BAD=90°,可以得到∠1+∠3=90°,因此 ,理由是 ;
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理 ,可以得到△DFA≌△AEB,由全等的性质得到 ,最后得到EF=AE-AF=DF-BE.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的补角相等;④同角或等角的余角相等;⑤DF=AB,AF=BE;⑥AF=BE,DF=AE;⑦AAS;⑧ASA。
以上横线处,依次所填正确的是( )
2编号:60156题型:单选题测试正确率:0%
如图1,在四边形ABCD中,AB=AD,∠BAD=90°,P是直线CD上一点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F.
如图,当点P在边CD上时,求证:EF=BE-DF.
解题思路:
由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;
又有∠BAD=90°,可以得到∠1+∠3=90°,因此 ,理由是 ;
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理 ,可以得到△DFA≌△AEB,由全等的性质得到 ,最后得到EF=AF-AE=BE-DF.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的余角相等;④同角或等角的补角相等;⑤AF=BE,DF=AE;⑥∠3=∠ADF,AF=BE;⑦AAS;⑧ASA。
以上横线处,依次所填正确的是( )
4编号:49173题型:单选题测试正确率:46.57%
5编号:49172题型:单选题测试正确率:53.15%
6编号:49171题型:单选题测试正确率:54.0%
7编号:49170题型:单选题测试正确率:53.15%
8编号:49159题型:单选题测试正确率:77.05%
9编号:49158题型:单选题测试正确率:47.07%