1编号:121773题型:单选题测试正确率:0%
如图,在四边形ABCD中,AB=AD,∠BAD=90°,P是直线CD上一点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F.
(1)如图1,当点P在边CD上时,求证:EF=BE-DF.
解题思路:
(1)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;
又有∠BAD=90°,可以得到∠1+∠3=90°,因此 ,理由是 ;
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理 ,可以得到△DFA≌△AEB,由全等的性质得到 ,最后得到EF=AF-AE=BE-DF.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的余角相等;④同角或等角的补角相等;
⑤AF=BE,DF=AE;⑥∠3=∠ADF,AF=BE;⑦AAS;⑧ASA
以上横线处,依次所填正确的是( )
2编号:121767题型:单选题测试正确率:0%
已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,
求证:∠C=∠BAE.
证明:如图, .
∵AE是△ABD的中线
∴BE=ED
在△ABE和△FDE中
∴△ABE≌△FDE(SAS)
∴
∵CD=AB
∴CD=FD
∵∠ADF=∠ADB+∠1
∴∠ADF=∠ADB+∠B
∵∠ADC为△ABD的一个外角
∴∠ADC=∠B+∠BAD
∵∠ADB=∠BAD
∴∠ADF=∠ADC
在△FAD和△CAD中
∴△FAD≌△CAD(SAS)
∴
∴∠C=∠BAE
请你仔细观察下列序号所代表的内容,然后判断:
①延长AE到F,连接DF,使得DF∥AB;
②延长AE到F,使得EF=AE,连接DF;
③延长AE到F,使得EF=AE,连接DF,过D作DF∥AB;
④AB=FD,AE=EF;
⑤AB=FD,∠BAE=∠F,∠B=∠1;
⑥AB=FD;
⑦AF=AC;
⑧∠F=∠C.
以上空缺处依次所填最恰当的是( )
3编号:121766题型:单选题测试正确率:0%
5编号:121764题型:单选题测试正确率:0%
6编号:121763题型:单选题测试正确率:0%
7编号:121762题型:单选题测试正确率:0%
8编号:121756题型:单选题测试正确率:0%
9编号:121755题型:单选题测试正确率:0%
10编号:121754题型:单选题测试正确率:0%