您选择的知识点:
  • 类比探究删除

1编号:75096题型:单选题测试正确率:0%

(上接第3,4题)在小明同学的证明过程中,需要证明三角形全等,请问他所依据的判定定理是(    )

2编号:75095题型:单选题测试正确率:0%

(上接第3题)在证明图1,图2中OE与OF之间的数量关系时,小明发现直接连接BO即可类比解决两问,你能说出小明的思路吗?(    )
①全等;②再证全等;③等角对等边;④等边对等角;⑤等腰直角三角形的性质.

3编号:75094题型:单选题测试正确率:0%

如图,在Rt△ABC中,AB=BC,∠ABC=90°.一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,图1,图2是旋转三角板所得图形的两种情况,三角板的两直角边分别交AB,BC或其延长线于点E,F,图1,图2可以证明出OE与OF之间有相同的数量关系,则这个数量关系为(    )

4编号:74071题型:单选题测试正确率:0%

(上接第4题)(2)当点E在BA的延长线上时,如图3,点D在BC边上,且CE=DE,按照下面的操作,能够证明AE=BD的是(    )

5编号:74070题型:单选题测试正确率:0%

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且CE=DE.为判断AE和BD之间的关系,小明准备分情况进行讨论:
当E是AB中点时,如图1,小明发现,由于E是AB边的中点,利用三线合一可以得到AE=BE,∠ECB=30°,再由CE=DE可以得到∠D=30°,进而得到∠BED=30°,就可以得到BD=BE=AE.但是当E不是AB中点时,就不能照搬上述方式进行证明.此时小明想到了另外一种方式:过点E作EF∥BC,交AC于点F,也能证明AE=BD.

(1)当E是线段AB上除端点和中点外的任一点时,如图2,按照上述辅助线证明AE=BD,证明过程中需要证明一对三角形全等,则证明这对三角形全等不能使用的条件是(    )

6编号:74069题型:单选题测试正确率:0%

(上接第1,2题)在图3中,D是线段BC延长线上的点,探究DE,DF与BG的关系,你认为正确的是(    )

7编号:74068题型:单选题测试正确率:0%

(上接第1题)在图2中,D是线段BC上的任意一点,DE+DF与BG的关系仍然成立.下列3种思路中你认为可行的是(    )
思路①:连接AD,借助SABD+SACD=SABC
思路②:过点D作DM⊥BG于点M,然后证明△BMD≌△DEB;
思路③:连接EF,证明EF=BG.

8编号:74067题型:单选题测试正确率:0%

在△ABC中,AB=AC=a,BC=b,且,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.在图1中,D是BC边上的中点,则DE+DF与BG的数量关系为(    )

9编号:73986题型:单选题测试正确率:0%

(上接第4题)(2)若的值为         ;若的值为         .(    )

10编号:73985题型:单选题测试正确率:0%

如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.
(1)当时,的值为(    )
(方法指导:为了求的值,可先求BN,AM的长,不妨设AB=2)