您选择的知识点:
  • 类比探究问题删除

1编号:90727题型:单选题测试正确率:0%

如图1,△ABC和△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC的中点F,连接AF,DF.为了证明FA⊥FD,FA=FD,我们只需要延长DF交线段AC于点G,说明AF是等腰直角三角形ADG的中线即可.将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,类比上面的做法,为了证明FA⊥FD,FA=FD,我们需要作的辅助线是(    )

2编号:90682题型:单选题测试正确率:0%

(上接第6,7题)(3)如图,当点D在边CB的延长线上时,其他条件不变,则AC,CF,CD之间的数量关系为(    )

3编号:90681题型:单选题测试正确率:0%

(上接第6题)(2)如图,当点D在边BC的延长线上时,其他条件不变,则AC,CF,CD之间的数量关系为(    )

4编号:90680题型:单选题测试正确率:0%

已知△ABC为等边三角形,点D为直线BC上一动点(不与点B,C重合),以AD为边作等边三角形ADF(A,D,F按顺时针排列),连接CF.
(1)如图,当点D在边BC上时,容易证明AC=CF+CD,在证明过程中需要用到某对三角形全等,则证明全等时用到的条件是(    )

5编号:90679题型:单选题测试正确率:0%

如图1所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上.连接BE,CD,M,N分别为BE,CD的中点,容易证明△AMN是等腰三角形.在图1的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图2所示的图形,则在图2中下列说法不正确的是(    )

6编号:90678题型:单选题测试正确率:0%

(上接第3题)如图3,在四边形ABCD中,AB=AD,E,F分别为DC,BC边上的点,且满足,当∠ABC与∠ADC满足(    )时,可使得上问结论依然成立.

7编号:90677题型:单选题测试正确率:0%

如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,
连接EF.利用旋转的思想很容易证明DE+BF=EF.
如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且
则DE,BF,EF之间的数量关系为(    )

8编号:90676题型:单选题测试正确率:0%

(上接第1题)(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若,则线段MN,AM,CN之间的数量关系为(    )

9编号:90675题型:单选题测试正确率:0%

如图1,在正方形ABCD中,点M,N分别在AD,CD上,若∠MBN=45°,易证MN=AM+CN.
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC,∠A=∠D,点M,N分别在AD,CD上,若,则线段MN,AM,CN之间的数量关系为(    )

10编号:88623题型:单选题测试正确率:0%

(上接第4,5题)(3)探究应用:这条道路EF的长为(    )