(2011甘肃)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()
- A.6
- B.13
- C.
- D.
答案
正确答案:C

延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的外心,推出AO⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解:延长AO交BC于D,连接OB,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AO⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:
.故选C.

略
