您选择的知识点:
  • 类比探究问题删除

1编号:109412题型:单选题测试正确率:0%

如图1,在正方形ABCD的边AB上取一点E,作EF⊥AB交BD于点F,取FD的中点G,
连接EG,CG,易证EG=CG且EG⊥CG.如图2,将△BEF绕点B逆时针旋转90°,如图3,将△BEF绕点B逆时针旋转180°,都可以得到和图1相同的结论.若不想证明三点共线,则最好作什么样的辅助线.(    )

2编号:109411题型:单选题测试正确率:0%

(上接第2题)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其他条件不变,要证明PM=PN,我们可以进行和上题一样的操作,则需要证明的全等三角形是(    )

3编号:109410题型:单选题测试正确率:0%

如图1,在△ABC中,P为BC边的中点,直线a绕顶点A旋转,若B,P在直线a的异侧,
BM⊥直线a于点M,CN⊥直线a于点N,连接PM,PN.要证PM=PN,只需延长MP交CN于点E,通过说明某对三角形全等就可以证明此结论.此时,证明结论成立的理论基础是(    )

4编号:109409题型:单选题测试正确率:0%

如图1,在长方形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形
ABCD内部,延长AF交CD于点G,则FG=CG,请证明.小明发现把AE延长与GC的延长线交于一点H,证明
△AHG是等腰三角形即可证明结论.如图2,将(1)中的长方形ABCD改为四边形,其中,AB∥CD,
AD∥BC,AB=CD,AD=BC,且其他条件不变,我们可以结合小明的思路,延长AE与GC的延长线交于一点H,此时,证明△AHG是等腰三角形的依据是(    )

5编号:109361题型:单选题测试正确率:0%

(上接第3题,第4题)(3)如图③,说明△ADM是等腰直角三角形之前,证明AD=DM需要直接使用到某对三角形全等,则判定这对三角形全等的条件是(    )

6编号:109360题型:单选题测试正确率:0%

(上接第3题)(2)将图①中△BDE绕B点旋转任意角度,如图③所示,再连接相应的线段,则(1)中的结论中,AF=DF以及AF⊥DF仍然成立,我们需要作的辅助线是(    )

7编号:109359题型:单选题测试正确率:0%

已知等腰直角三角形ABC中,D为斜边BC上一点,过D点作DE⊥BC交AB于E,连接CE,F为CE中点,连接AF,DF,易证AF=DF;
(1)若将图①中△BDE绕点B顺时针旋转45°,如图②所示,取CE的中点F,连接AF,DF,则下列结论中错误的是(    )

8编号:109358题型:单选题测试正确率:0%

在第1题图2的证明中,说明△ADG是等腰直角三角形之前,证明AD=AG需要直接使用到某对三角形全等,则判定这对三角形全等的条件是(    )

9编号:109357题型:单选题测试正确率:0%

如图1,△ABC和△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.
连接EC,取EC的中点F,连接AF,DF.为了证明FA⊥FD,FA=FD,我们只需要延长DF交线段AC于点G,说明AF是等腰直角三角形ADG的中线即可.将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,类比上面的做法,为了证明FA⊥FD,FA=FD,我们需要作的辅助线是(    )

10编号:109311题型:单选题测试正确率:0%

(上接第6,7题)(3)如图,当点D在边CB的延长线上时,其他条件不变,
则AC,CF,CD之间的数量关系为(    )

第7页 共32页 首页<<234567891011>>尾页  GOTO