您选择的知识点:
  • 类比探究删除

1编号:60161题型:单选题测试正确率:0%

(上接第4,5题)(3)如图3,若,若让你添加一个关于∠α与∠BCA的条件,使结论EF=BE-AF仍然成立,则你添加的条件是(    )

2编号:60160题型:单选题测试正确率:0%

(上接第4题)(2)如图2,若∠BCA=60°,α=120°,结论EF=BE-AF仍成立吗?若成立,请给出证明,若不成立,请说明理由.

解题思路:(2)由∠BCA=60°,∠AFC=120°,可以得到∠2+∠3=60°,∠3+∠1=60°,得到       
理由是                      .又因为CB=AC,∠BEC=∠CFA,因此根据全等三角形的判定定理           ,可以得到           ,由全等的性质得到CE=AF,BE=CF,最后得到EF=CF-CE=BE-AF.
①∠2=∠3;②∠2=∠1;③等式的性质;④同角或等角的余角相等;
⑤△BEC≌△AFC;⑥△BEC≌△CFA;⑦ASA;⑧AAS.
以上横线处,依次所填正确的是(    )

3编号:60159题型:单选题测试正确率:0%

如图1,直线CD经过∠BCA的顶点C,点E,F在直线CD上,已知CA=CB,∠BEC=∠CFA=α.
(1)如图1,若∠BCA=90°,α=90°,试求证:EF=BE-AF.

解题思路:(1)由∠BCA=∠CFA=90°,可以得到∠2+∠3=90°,∠3+∠1=90°,得到             ,理由是                      
又因为BC=CA,∠BEC=∠CFA,因此根据三角形全等的判定定理           ,可以得到△BEC≌△CFA,由全等的性质得到                      ,最后得到EF=CF-CE=BE-AF.
①∠2=∠1;②∠2=∠3;③同角或等角的余角相等;④同角或等角的补角相等;
⑤CE=AF,BE=AC;⑥CE=AF,BE=CF;⑦AAS;⑧ASA。
以上横线处,依次所填正确的是(    )

4编号:60158题型:单选题测试正确率:0%

(上接第1,2题)(3)如图3,当点P在CD的延长线上时,BE,DF,EF这三条线段之间的数量关系和证明思路分别是(    )

5编号:60157题型:单选题测试正确率:0%

(上接第1题)(2)如图2,当点P在DC的延长线上时,求证:EF=DF-BE.

解题思路:(2)由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;又有∠BAD=90°,可以得到∠1+∠3=90°,因此             ,理由是            
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理           ,可以得到△DFA≌△AEB,由全等的性质得到                      ,最后得到EF=AE-AF=DF-BE.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的补角相等;④同角或等角的余角相等;⑤DF=AB,AF=BE;⑥AF=BE,DF=AE;⑦AAS;⑧ASA。
以上横线处,依次所填正确的是(    )

6编号:60156题型:单选题测试正确率:0%

如图1,在四边形ABCD中,AB=AD,∠BAD=90°,P是直线CD上一点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为点E,F.
如图,当点P在边CD上时,求证:EF=BE-DF.

解题思路:
由BE⊥PA,DF⊥PA,得∠DFA=∠AEB=90°,所以∠2+∠3=90°;
又有∠BAD=90°,可以得到∠1+∠3=90°,因此           ,理由是              
又因为AD=BA,∠DFA=∠AEB,因此根据三角形全等的判定定理           ,可以得到△DFA≌△AEB,由全等的性质得到                      ,最后得到EF=AF-AE=BE-DF.
①∠BAE=∠ADF;②∠1=∠2;③同角或等角的余角相等;④同角或等角的补角相等;⑤AF=BE,DF=AE;⑥∠3=∠ADF,AF=BE;⑦AAS;⑧ASA。
以上横线处,依次所填正确的是(    )

7编号:52917题型:单选题测试正确率:70.74%

(上接试题9)类比延伸,如图2,在原题条件下,若,△ABC边长为m,则CD的长为(    )

8编号:52916题型:单选题测试正确率:74.59%

某次数学课上,老师出示了一道题,如图1,在边长为4等边三角形ABC中,点E在AB上..点D在CB的延长线上,且ED=EC,求CD的长.

(1)尝试探究
在图1中,过点E作EF∥BC,交AC于点F.先确定线段AE与BD的大小关系,然后求出CD的长为(    )

9编号:52095题型:单选题测试正确率:40.0%

(上接第3,4题)(3)在图1的基础上,将△BEF绕点B旋转,使点E在AB的延长线上,其他条件不变,如图3,为了证明EG和CG之间的数量和位置关系,类比(1),(2)中的辅助线和证明思路,需要作出的辅助线是(    )

10编号:52094题型:单选题测试正确率:60.23%

(上接第3题)(2)在图1的基础上,将△BEF绕点B旋转,使点E在CB的延长线上,
其他条件不变,如图2,则EG和CG之间的数量和位置关系为(    )