如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,2),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E.那么点D的坐标为( )

- A.
- B.
- C.
- D.
答案
正确答案:B

如图,过D作DF⊥x轴于F,∵点B的坐标为(1,2),∴AO=1,AB=2,根据折叠可知:CD=OA=1,而∠CDA=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,设OE=x,则CE=2-x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(2-x)2=x2+12,∴
,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,∴
=
=
,而AD=AB=2,∴AE=CE=2-
=
,即
,∴DF=
,AF=
,∴OF=
-1=
,∴D的坐标为(-
,
).故选:B.

略
