在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论。

答案
解:AB=AF+CF,
证明如下:延长AE交DC的延长线与点G,
∵E为BC边的中点
∴BE=CE
∵AB∥DC
∴∠B=∠BCG,∠BAG=∠G
在△ABE和△GCE中,
∴△ABE≌△GCE(AAS)
∴AB=GC
∵∠BAE=∠EAF
∴∠G=∠EAF
∴AF=GF
∴AB=GC=GF+FC=AF+CF
知识点:三角形全等之倍长中线

略

略
