如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO上任意一点,过B作BE⊥AF于E,连接DE交BC于G.求证:∠CAF=∠CDE.

答案
(1)证明:连接OD,
∵△ABC是Rt三角形,BE⊥AF
∴∠BEA=∠ACB=90°,
∴A,B,E,C,四点共圆,且AB是此圆直径,
又∵CH⊥AB,CH=DH,
∴OC=OD
∴D在此圆上,
∴A,B,C,D,E五点共圆,
∴∠CAF=∠CDE.
知识点:确定圆的条件 相似三角形的判定与性质

先连接OD,根据已知条件得出∠BEA=∠ACB=90°,得出A,B,E,C,四点共圆且AB是此圆直径,再根据CH⊥AB,CH=DH,确定出D也在此圆上,从而得出A,B,C,D,E五点共圆,即可证出∠CAF=∠CDE

略
