(2011广东)某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4500元,求甲、乙两种小鸡苗各购买了多少只?(2)若购买这批小鸡苗的钱不超过4700元,问应选购甲种小鸡苗至少多少只?(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?
答案
解:设购买甲种小鸡苗x只,那么乙种小鸡苗为(2000-x)只.
(1)根据题意列方程,得2x+3(2000-x)=4500,解这个方程得:x=1500,2000-x=2000-1500=500,
即:购买甲种小鸡苗1500只,乙种小鸡苗500只;
(2)根据题意得:2x+3(2000-x)≤4700,解得:x≥1300,
即:选购甲种小鸡苗至少为1300只;
(3)设购买这批小鸡苗总费用为y元,根据题意得:y=2x+3(2000-x)=-x+6000,又由题意得:94%x+99%(2000-x)≥2000×96%,解得:x≤1200,因为购买这批小鸡苗的总费用y随x增大而减小,所以当x=1200时,总费用y最小,乙种小鸡为:2000-1200=800(只),
即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y最小,最小为4800元.
知识点:二元一次方程组的应用 一元一次不等式的应用 一次函数的应用

(1)利用这批鸡苗的总费用为等量关系列出一元一次方程后解之即可;
(2)利用这批鸡苗费用不超过4700元列出一元一次不等式求解即可;
(3)列出有关总费用的函数关系式,求得当总费用最少时自变量的取值范围即可.

注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
