如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6),那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

答案

解:设运动时间为t,则DQ=t,AQ=6-t,AP=2t,BP=12-2t.
(1)若△QAP为等腰直角三角形,则AQ=AP,即:6-t=2t,t=2(符合题意)
∴t=2时,△QAP为等腰直角三角形.
(2)∠B=∠QAP=90°
①当△QAP∽△ABC时,,即:
解得:(符合题意);
②当△PAQ∽△ABC时,,即:
解得:(符合题意).
∴ 当时,以点Q、A、P为顶点的三角形与△ABC相似.

知识点:相似中的动点问题  

解题思路

易错点

查看相关视频

下载次数:3

<<上一题   下一题>>