如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP:PQ:QR.

答案
解:(1)△BCP∽△BER,△CQP∽△DQR,
△ABP∽△CQP,△DQR∽△ABP
(2)∵AC∥DE
∴△BCP∽△BER
∴
∵四边形ABCD和四边形ACED都是平行四边形
∴AD=BC,AD=CE
∴BC=CE,即点C为BE的中点
∴
又∵AC∥DE
∴△CQP∽△DQR
∴
∵点R为DE的中点
∴DR=RE
∴
综上:BP:PQ:QR=3:1:2
知识点:相似基本模型应用

略

略
