一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4….若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2 021,则这只小球的初始位置点P0所表示的数是( )
- A.1 971
- B.1 970
- C.-1 971
- D.-1 970
答案
正确答案:A
知识点:数轴规律探究

解:设这只小球的初始位置点P0所表示的数是a,
则P1表示的数是a﹣1,
P2表示的数是a+1,
P3表示的数是a﹣2,
P4表示的数是a+2,
…,
∴P100表示的数是a+50,
∵点P100所表示的数恰好是2021,
∴a+50=2021,
解得a=1971,
故选:A.

略
