如图,在△ABC中,∠B=∠C,D为CA延长线上一点,DF⊥BC于点F,交AB于点E.求证:∠D=∠AED.

证明:如图,

∵∠1=∠2(对顶角相等)
∴∠1=∠D(等量代换)
即∠D=∠AED
横线处应填写的过程最恰当的是( )
- A.∵DF⊥BC(已知)∴∠EFB=∠DFC=90°(垂直的定义)∴∠D+∠C=90°,∠2+∠B=90°(直角三角形两锐角互余)∵∠B=∠C(已知)∴∠2=∠D(等角的余角相等)
- B.∵DF⊥BC(已知)∴∠EFB=∠DFC=90°(垂直的定义)∵∠B=∠C(已知)∴∠D+∠C=90°,∠2+∠B=90°(直角三角形两锐角互余)∴∠2=∠D(等角的余角相等)
- C.∵DF⊥BC(已知)∴∠EFB=∠DFC=90°(垂直的定义)∴∠D+∠C=90°,∠2+∠B=90°(直角三角形两锐角互余)∴∠2=∠D(等角的余角相等)
- D.∵DF⊥BC(已知)∴∠EFB=∠DFC=90°(垂直的定义)∴∠D+∠C=90°,∠2+∠B=90°(直角三角形两锐角互余)∴∠D+∠B=90°,∠2+∠C=90°(等量代换)
答案
正确答案:A
知识点:略


略
